Please wait a minute...
工程设计学报  2015, Vol. 22 Issue (2): 161-165    DOI: 10.3785/j.issn. 1006-754X.2015.02.010
建模、分析、优化和决策     
伴随型非线性系统的自适应RBF神经网络补偿控制
钟 斌
中国人民武装警察部队工程大学 装备工程学院,陕西 西安 710086
Companion nonlinear system control based on adaptive RBF network compensation
ZHONG Bin
Equipment Engineering College, Engineering University of Chinese Armed Police Force, Xi′an 710086, China
 全文: PDF(753 KB)   HTML
摘要: 为了抵消伴随型非线性系统中的非线性项,可以设计控制器对非线性系统精确线性化.通常由于系统中存在外界不确定性因素导致系统模型的不确定,而不能直接设计控制器.利用“RBF神经网络能以任意精度逼近连续函数”的原理,对系统模型中的不确定项进行自适应辨识,并将辨识结果提供给控制器,从而实现伴随型非线性系统的神经网络自适应补偿控制.将控制器应用于起重机吊重摆角子系统,对摆角进行控制.实验结果表明:吊重摆角及其角速度约在5 s后,得到了很好的控制,并且控制器对系统模型的不确定项的逼近误差约在5 s时达到0;控制器对系统的不确定性因素和系统参数变化均具有很强的鲁棒性.
关键词: 伴随型系统非线性系统RBF神经网络自适应补偿起重机吊重系统    
Abstract: In order to counteract the nonlinear term in companion nonlinear system, a controller can be designed to precisely linearize the nonlinear system. Generally, there are uncertain factors existing outside the system which lead to the system model uncertainty, so the controller cannot be designed directly. The uncertain term in the system model was adaptively identified by using the principle of that RBF neural network could approximate any continuous function with any precision. The identified result was provided to the controller and it realized the adaptive compensation control of the companion nonlinear system based on neural network. The designed controller was used to control swing angle subsystem of crane-load system. Experiment results showed that the swing angle of the load and the angular velocity of the swing angle were well controlled in about 5 s, and the approximation error of the uncertain term in the system model could reach zero at about 5 s; the designed controller had strong robustness against the uncertain factors of the system and the change of the system parameters.
Key words: companion system    nonlinear control    RBF neural network    adaptive compensation    crane-load system
收稿日期: 2014-03-18 出版日期: 2015-04-28
基金资助:

国家自然科学基金资助项目(51005246).

作者简介: 钟斌(1975—),男,四川万源人,博士,副教授,硕士生导师,从事机电系统智能控制、军事装备理论及其应用研究,E-mail:zhongbinchina@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

钟 斌. 伴随型非线性系统的自适应RBF神经网络补偿控制[J]. 工程设计学报, 2015, 22(2): 161-165.

ZHONG Bin. Companion nonlinear system control based on adaptive RBF network compensation. Chinese Journal of Engineering Design, 2015, 22(2): 161-165.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn. 1006-754X.2015.02.010        https://www.zjujournals.com/gcsjxb/CN/Y2015/V22/I2/161

[1] 袁凯, 刘延俊, 孙景余, 罗星. 基于模糊RBF神经网络的水下机械臂控制研究[J]. 工程设计学报, 2019, 26(6): 675-682.
[2] 秦永峰, 龚国芳, 王飞, 孙辰晨. 基于RBF神经网络的液黏调速离合器活塞位移控制器设计[J]. 工程设计学报, 2019, 26(5): 603-610.
[3] 李晓豁,翁正洋,钱亚森,史尚伟,李 岩. 基于果蝇算法优化模糊RBF网络的液压破碎锤故障诊断[J]. 工程设计学报, 2015, 22(6): 540-545.
[4] 韩海涛, 马红光, 李飞, 张家良. 基于系统输出频率响应函数的非线性系统研究[J]. 工程设计学报, 2011, 18(5): 373-376.